Nowhere-zero 3-flows in Cayley Graphs of Abelian Groups
نویسندگان
چکیده
منابع مشابه
Nowhere-zero 3-flows in abelian Cayley graphs
We characterize Cayley graphs of abelian groupswhich admit a nowhere-zero 3-flow. In particular, we prove that every k-valent Cayley graph of an abelian group, where k 4, admits a nowhere-zero
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملNowhere-zero 3-flows in products of graphs
A graph G is an odd-circuit tree if every block of G is an odd length circuit. It is proved in this paper that the product of every pair of graphs G and H admits a nowhere-zero 3-flow unless G is an odd-circuit tree and H has a bridge. This theorem is a partial result to the Tutte’s 3-flow conjecture and generalizes a result by Imrich and Skrekovski [7] that the product of two bipartite graphs ...
متن کامل